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a b s t r a c t

A numerical procedure to solve the linearized Boltzmann equation with an arbitrary inter-
molecular potential by the discrete velocity method is elaborated. The equation is written
in terms of the kernel, which contains the differential cross section and represents a singu-
larity. As an example, the Lennard-Jones potential is used and the corresponding differen-
tial cross section is calculated and tabulated. Then, the kernel is calculated so that to
overcome its singularity. Once, the kernel is known and stored it can be used for many
kinds of gas flows. In order to test the method, the transport coefficients, i.e. thermal con-
ductivity and viscosity for all noble gases, are calculated and compared with those obtained
by the variational method using the Sonine polynomials expansion. The fine agreement
between the results obtained by the two different methods shows the feasibility of appli-
cation of the proposed technique to calculate rarefied gas flows over the whole range of the
Knudsen number.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays, most of problems of rarefied gas dynamics are solved on the basis of the model kinetic equations. Many exam-
ples of such an approach can be found e.g. in Refs. [1–3]. The model equations are obtained as a simplification of the exact
Boltzmann equation. As a result, they reduced significantly computational efforts to calculate rarefied gas flows and became
a widely used tool in practical calculations. However, the simplification introduces an uncertainty, which can be estimated
only if a numerical solution based on the exact Boltzmann equation is available at least for few values of the main parameter
of rarefied gas dynamics, viz. Knudsen number.

Recently, the interest to weakly disturbed rarefied gas flows increased because of their applications to microfluidics, see
e.g. Ref. [4]. The fact is that, the weakly disturbed gas flows cannot be calculated by the direct simulation Monte Carlo meth-
od [5], but the linearized kinetic equation should be applied. In this connection, here we will restrict ourselves only by the
linearized Boltzmann equation (LBE).

A numerical solution of the LBE represents great computational difficulties related to calculations of the collision opera-
tor, which is a five fold integral in general case. If one assumes the hard sphere model for the intermolecular interaction, then
the collision integral can be simplified and reduced to a four fold integral. An application of the LBE to one-dimensional flows
. All rights reserved.
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allows to reduce the collision operator to a three fold integral. Because of this simplification the LBE for the hard spheres was
successfully applied to obtain the transport coefficients [6–9] and to calculate some one-dimensional flows Refs. [10–23].

Although the above cited works represent a remarkable advance in the numerical solution of the LBE, they are restricted
by the hard sphere model of the molecular interaction. At the same time, some investigations, Refs. [24,25], showed that the
intermolecular potential can strongly influence some phenomena in rarefied gases. That is why, it is very important to elab-
orate numerical technique to solve the LBE for an arbitrary potential. The main difficulties of such a technique are related to
calculations of the collision operator, which contains a singular kernel. Moreover, the calculation of the kernel itself depends
on the differential cross section, which in general case is not an analytic function and must be calculated numerically.

The aim of this work is to elaborate a numerical technique to calculate the collision operator with the singular kernel
assuming an arbitrary intermolecular potential. To demonstrate an application of the presented techniques, the thermal con-
ductivity and viscosity coefficients are calculated for the (6–12) Lennard-Jones potential.

2. Statement of the problem

In the linear theory, the gas is assumed to be weakly disturbed from its equilibrium state described by the Maxwellian
distribution function
f0ðvÞ ¼
n

ð
ffiffiffiffi
p
p

vmÞ3
exp � v

vm

� �2
" #

; vm ¼
2kT
m

� �1=2

; ð1Þ
where n is the equilibrium number density, T is the equilibrium temperature, v the molecular velocity, vm is the most prob-
able molecular speed, m is the molecular mass, and k is the Boltzmann constant. The non-equilibrium distribution function
f ðr0;vÞ is related to the perturbation function hðr0;vÞ as
f ðr0;vÞ ¼ f0ðvÞ½1þ hðr0;vÞ n�; ð2Þ
where n is a small parameter of linearization and r0 is the spacial position vector. In general case, the distribution function
depends also on time. However, for our purpose it is enough to consider time independent problems. Substituting Eq. (2) into
the full Boltzmann equation, its linearized form is obtained, see e.g. Refs. [26–29],
v � @hðr0;vÞ
@r0

¼ bL0ðhÞ; ð3Þ
where bL0 is the linearized collision operator. If the total cross section r0T of the interacting particles is finite, the collision inte-
gral can be split as
bL0ðhÞ ¼ Z f0ðv�ÞK 0ðv ;v�Þhðr0;v�Þdv� � m0ðvÞhðr0;vÞ; ð4Þ
where K 0ðv ;v�Þ is the kernel given as
K 0ðv ;v�Þ ¼ 2pg0
Z p

0
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r0ðg0;vÞ is the differential cross section (DCS), g0 ¼ jv � v�j is the relative velocity and v is the deflection angle depending on
the impact parameter b0 and on the relative velocity g0; I0 is the modified Bessel function of the first kind and zero order de-
fined as
I0ðxÞ ¼
1

2p

Z 2p

0
expðx cos fÞdf: ð6Þ
The collision frequency reads
m0ðvÞ ¼ r0T
Z

f0ðv�Þg0dv�: ð7Þ
Note, the total cross section r0T is related to the DCS as
r0T ¼ 2p
Z p

0
r0ðg0;vÞ sinvdv: ð8Þ
The DCS r0ðg0;vÞ is determined by the intermolecular interaction potential. For the hard sphere molecular it is given by the
simple expression
r0 ¼ d2

4
; ð9Þ
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where d is the molecular diameter. Then, the kernel expression (5) can be significantly simplified. However, for a potential
containing both attractive and repulsive forces, e.g. the Lennard-Jones one, the computation of the DCS is not trivial. As a
consequence, the calculation of the kernel given by Eq. (5) becomes a very difficult task.

In the present work, a methodology of calculation of the kernel K 0ðv;v�Þ for an arbitrary potential will be presented and
its application to the zero-dimensional problems, viz. viscosity and thermal conductivity computation, will be given. As an
example the (6–12) Lennard-Jones potential [26–28] will be used, which reads
U0ðq0Þ ¼ 4�
d
q0

� �12

� d
q0

� �6
" #

; ð10Þ
where q0 is the intermolecular distance, � is a fixed parameter which depends on the gas species. Unlike the hard sphere
model, the parameter d is not the diameter, but it corresponds to the distance with the zero potential.

As has been mentioned above, Eq. (4) is valid only for the finite total cross section. To satisfy this condition we have to
restrict the range of the intermolecular influence by taking an upper limit for the impact parameter b0M, which should be sig-
nificantly larger than the parameter d. In this case the total cross section becomes finite and given as
r0T ¼ pb02M: ð11Þ
3. Parameterization of the problem

For the further derivations it is more convenient to introduce the following dimensionless variables
r ¼ r0

a
; c ¼ v 0

vm
; g ¼ g0

vm
; ð12Þ

q ¼ q0

d
; b ¼ b0

d
; bM ¼

b0M
d
; ð13Þ

rðg;vÞ ¼ r0ðg0;vÞ
d2 ; rT ¼

r0T
d2 ð14Þ

U ¼ U0

�
; E ¼ mg02

4�
; ð15Þ

/ðcÞ ¼ v3
m

n
f0ðvÞ ¼ p�3=2e�c2

; ð16Þ
where a is the characteristic size of gas flow.
In terms of the dimensionless quantities, the LBE takes the form
c � @h
@r
¼ ad2nbLðhÞ; ð17Þ
where bLðhÞ is the dimensionless collision operator given by
bLðhÞ ¼ Z /ðc�ÞKðc; c�Þhðr; c�Þdc� � mðcÞhðr; cÞ; ð18Þ
Kðc; c�Þ is the dimensionless kernel:
Kðc; c�Þ ¼ 2pg
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The dimensionless collision frequency mðcÞ can be integrated analytically for any potential
mðcÞ ¼ rTffiffiffiffi
p
p e�c2 þ 2c þ 1

c

� �Z c

0
e�g2

dg
� �

: ð20Þ
It should be noted that the collision operator has the following property:
bLðWÞ ¼ 0; W ¼ f1; c; c2g; ð21Þ
which is a consequence of the mass ðW ¼ 1Þ, momentum ðW ¼ cÞ and energy ðW ¼ c2Þ conservation laws. Using the expres-
sion of the collision operator (18) the conservations laws Eq. (21) can be also written as
Z

/ðc�ÞKðc; c�ÞWðc�Þdc� ¼ mðcÞWðcÞ: ð22Þ
This property can be used to overcome the singularity of the kernel Kðc; c�Þ arising at g ¼ 0. With help of Eq. (22) the collision
operator is written down as
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bLðhÞ ¼ Z /ðc�ÞKðc; c�Þ hðr; c�Þ �Wðc�Þ
WðcÞ hðr; cÞ

� �
dc�: ð23Þ
Although the kernel is singular at g ¼ 0, the term in the brackets is zero in this limit. Such a procedure is usual in the theory
of singular integral equations [30].

4. Deflection angle

The main difference of the present work from all previous ones dealt with a numerical solution of the LBE [7–9, 10–23] is
the intermolecular potential with both attractive and repulsive forces. In this case the calculation of the DCS, which is a part
of the kernel (19), is not so simple as that in the case of the hard sphere molecules. In this section, the numerical procedure
and results on the DCS for the Lennard-Jones potential are described.

The relation of the deflection angle to the intermolecular potential can be found in many text books, see e.g. Ref. [27]. The
scheme and notations for a binary collision are shown in Fig. 1.

First, the angle w is calculated as
w ¼ b
qm

Z 1

0
1� bq

qm

� �2

�
Uðqm

q Þ
E

" #�1=2

dq; ð24Þ
where qm is the largest root of the equation
1� b
q

� �2

� UðqÞ
E
¼ 0: ð25Þ
Physically, qm corresponds to the minimum distance between two particles during their interaction. The root qm is calcu-
lated by the bisection method with a numerical accuracy 10�15 for given values of E and b. To overcome the singularity of
the integrand in Eq. (24) the integration is split as
w ¼ b
qm

Z 1

0
� � � dq ¼ b

qm

Z 1�e

0
� � � dqþ

Z 1

1�e
� � � dq

� �
; ð26Þ
where e� 1. The first term in the parentheses of Eq. (26) is calculated using the adaptive Simpson method [31], with the
numerical accuracy 10�15, while the second term is approximated analytically as
2
ffiffiffi
e
p

2
b
qm

� �2

� qm

E
dU
dq

				
qm

" #�1=2

: ð27Þ
In the numerical calculations the values of e was 10�8. Such a split allows us to calculate the deflection angle with higher
accuracy than that in Ref. [27].

Once the angle w is known the deflection angle is calculated as
v ¼ arccos½� cosð2wÞ�: ð28Þ
Note, the angle w can vary from zero to infinity, while the deflection angle v is restricted by the interval from 0 to p. Some
values of the deflection angle v are presented in Table 1 and compared with those tabulated in Ref. [27]. It can be seen that
for the most values of the energy E and impact parameter b the results reported in Ref. [27] are in a good agreement with our
Fig. 1. Scheme and notation for binary collision.



Table 1
Deflection angle v vs. impact parameter b for some values of energy E.

E ¼ 0:1 E ¼ 1 E ¼ 10 E ¼ 100

b v b v b v b v

Present Ref. [27] Present Ref. [27] Present Ref. [27] Present Ref. [27]

2.838 0.3230 0.323 1.894 0.3682 0.369 1.477 0.1094 0.110 1.244 0.01961 0.020
2.696 0.5435 0.543 1.768 0.7700 0.768 1.334 0.1794 0.179 1.109 0.01309 0.013
2.643 0.7049 0.706 1.721 1.201 1.207 1.259 0.2062 0.206 1.035 0.01803 0.018
2.598 0.9437 0.945 1.698 1.683 1.689 1.205 0.1912 0.192 0.9812 0.07213 0.072
2.572 1.199 1.205 1.678 2.693 2.664 1.162 0.1402 0.141 0.9376 0.1452 0.145
2.544 1.977 1.998 1.668 3.062 3.105 1.123 0.05934 0.060 0.8990 0.2342 0.234
2.539 2.584 2.576 1.658 3.103 3.135 1.086 0.04310 0.043 0.8630 0.3361 0.336
2.538 2.903 2.346 1.643 2.699 2.784 1.049 0.1624 0.163 0.8280 0.4487 0.449
2.516 1.802 1.166 1.623 2.270 2.320 1.011 0.2943 0.297 0.7931 0.5698 0.570
2.503 2.324 1.944 1.596 1.850 1.871 0.9704 0.4389 0.440 0.7576 0.6983 0.699
2.470 3.081 2.867 1.563 1.473 1.470 0.9277 0.5905 0.592 0.7206 0.8344 0.835
2.456 2.984 3.106 1.522 1.117 1.109 0.8816 0.7505 0.752 0.6818 0.9771 0.978
2.400 2.356 2.509 1.473 0.7804 0.775 0.8315 0.9188 0.920 0.6403 1.128 1.129
2.328 1.819 1.943 1.415 0.4574 0.458 0.7762 1.097 1.099 0.5954 1.288 1.289
2.171 1.041 1.124 1.348 0.1463 0.148 0.7145 1.288 1.289 0.5461 1.459 1.460
1.996 0.4360 0.491 1.270 0.1624 0.161 0.6444 1.495 1.496 0.4908 1.646 1.646
1.881 0.1119 0.150 1.178 0.4781 0.474 0.5627 1.725 1.726 0.4272 1.854 1.854
1.593 0.5613 0.542 0.9410 1.151 1.149 0.4632 1.993 1.993 0.3507 2.096 2.097
1.119 1.444 1.437 0.5588 2.028 2.027 0.3302 2.335 2.335 0.2493 2.407 2.407
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ones. However, for the small value of the energy E ¼ 0:1 and for the impact parameter b varying in the interval from 2.503 to
2.539 the deflection angle calculated here is quite different from that reported in Ref. [27]. The discrepancy occurs in the
range where the deflection angle v oscillates frequently between 0 and p. Physically, this oscillation corresponds to the sit-
uation when a moving particle makes several loops around the fixed particle during their interaction. The numerical method
to calculate v described in Ref. [27] does not provide a good accuracy for such a situation. In spite of the discrepancy pointed
out above its influence on integral characteristics, e.g. omega integrals, could not be so significant.

The omega integrals are defined as [26–28]
Table 2
Reduce

Xð1;1Þ�

Xð1;2Þ�

Xð1;3Þ�

Xð2;2Þ�

Xð2;3Þ�

Xð2;4Þ�

Xð2;5Þ�

Xð2;6Þ�

Xð4;4Þ�
Xðl;rÞ ¼
ffiffiffiffi
p
8

r
vmd2

2r

Z 1

0
exp � g2

2

� �
g2rþ3

Z bM

0
½1� cosl vðg; bÞ�bdbdg ð29Þ
and widely used in the kinetic theory of gases to calculate the transport coefficients. For the hard spheres the integrals are
calculated analytically
Xðl;rÞh:s: ¼
ffiffiffiffi
p
8

r
ðr þ 1Þ! 1� 1þ ð�1Þl

2ðlþ 1Þ

" #
vmd2

: ð30Þ
Note that the numerical data on the deflection angle presented in Table 1 are given in terms of the dimensionless energy E
and impact parameter b. In this case it is not necessary to specify the potential parameters � and d. However, to calculate the
omega integrals (29) the dependence of the deflection angle on the relative speed g is needed. According to Eqs. (13) and (16)
the dimensionless relative velocity g is related to the energy E as
g2 ¼ 4�
mv2

m
E ¼ 2�

kT
E; ð31Þ
d omega integrals Xðl;rÞ�� .

kT=� ¼ 0:3 kT=� ¼ 1 kT=� ¼ 10

Present Ref. [27] Present Ref. [27] Present Ref. [27]

2.650 2.662 1.440 1.439 0.7422 0.7424
2.257 2.256 1.204 1.204 0.7008 0.7013
1.966 1.962 1.076 1.076 0.6733 0.6735
2.844 2.785 1.593 1.587 0.8244 0.8242
2.581 2.535 1.389 1.387 0.7927 0.7922
2.362 2.333 1.259 1.258 0.7693 0.7690
2.170 2.152 1.172 1.172 0.7507 0.7501
2.001 1.990 1.113 1.113 0.7352 0.7345
2.571 2.557 1.381 1.377 0.8000 0.7988



3350 F. Sharipov, G. Bertoldo / Journal of Computational Physics 228 (2009) 3345–3357
i.e. the omega integrals depend on the reduced temperature T� ¼ kT=�.
In the literature, usually the reduced omega integrals
Xðl;rÞ� ¼ Xðl;rÞ

Xðl;rÞh:s:

ð32Þ
are reported. In Ref. [27], the omega integrals are tabulated for a wide range of the parameter T�. Here, the integrals were
calculated with the accuracy 10�5 for three values of T�, viz., 0.3, 1 and 10. A comparison with these data of Ref. [27] is per-
formed in Table 2. It can be seen that the improvement of the accuracy in the deflection angle vðE; bÞ did not change signif-
icantly the omega integrals.

5. Differential cross section

According to the definition, the DCS is related to the function vðE; bÞ as
rðE;vÞ ¼ b
sin v

1
@v
@b

		 		 : ð33Þ
However, the numerical results on the deflection angle vðE; bÞ obtained here and in Ref. [27] show that there are several val-
ues of the impact parameter b corresponding to the same value of the deflection angle v. Thus, if the energy E is fixed, then
several inverse functions b ¼ bðE;vÞ will correspond to the same function v ¼ vðE; bÞ. In this case, the DCS is related to the
deflection angle as [32,33]
rðE;vÞ ¼ 1
sin v

X
i

bi
@biðE;vÞ
@v

				 				; ð34Þ
where the summing includes all inverse function bi ¼ biðE;vÞ.
A direct calculation of the DCS using Eq. (34) is not a simple task because the derivative @b

@v can be singular. Moreover, for
some values of v and E the number of the inverse functions biðE;vÞ can be infinite. To overcome all these problems some
methods were developed [34,35] such as: expansions of r in series, the histogram method, the method of incomplete cross
section. Among these methods, the last seems the best choice, since it provides good results with a modest computational
effort.

In our notations, the incomplete cross sections WðE;vÞ is defined as
WðE;vÞ ¼
Z p

v
rðE;v0Þ sin v0 dv0: ð35Þ
If the function WðE;vÞ is known, it is possible to calculate the DCS as
rðE;vÞ ¼ � 1
sinv

@

@vWðE;vÞ: ð36Þ
With help of Eqs. (34) and (35) the function WðE;vÞ may be redefined in another way, which simplifies its calculation Ref.
[35]
WðE;v0Þ ¼
Z bM

0
bH½vðE; bÞ � v0�db; ð37Þ
where HðxÞ is the Heaviside step function.
In the numerical calculations, the impact parameter b and energy E are discretized as
bk ¼
bM

Nb

� �
k; 0 6 k 6 Nb; ð38Þ

Ei ¼ ðEmax � EminÞ
i2 � 1
N2

e � 1

 !
þ Emin; 1 6 i 6 Ne; ð39Þ
where Nb and Ne are integer. Then, the angle w is calculated for all pairs bk and Ei using the procedure described above, i.e. the
matrix
wik ¼ wðEi; bkÞ ð40Þ
is stored. The variable v is discretized as
vj ¼ jDv; Dv ¼ p
Nv

; 0 6 j 6 Nv; ð41Þ
where Nv is an integer. Then, the incomplete cross section WðEi;vjÞ is calculated for all pairs Ei and vj as
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Fig. 2. Differential cross section r vs deflection angle v: (a) E ¼ 0:1; (b) E ¼ 1; (c) E ¼ 10; (d) E ¼ 100.

Table 3
Differential cross section r vs deflection angle v.

r

v E = 0.1 1 10 100

0 1 1 1 1
0.01 3.73(4)a 1.73(4) 8.14(3) 4.88(3)
0.019792 7.77(3) 3.57(3) 1.71(3) 3.60(3)
0.020420 7.12(3) 3.29(3) 1.59(3) 1
0.021363 6.37(3) 2.97(3) 1.42(3) 6.46(1)
0.1001 1.77(2) 8.22(2) 4.90(2) 5.921
0.2000 3.70(1) 1.73(2) 3.46(2) 1.920
0.20577 3.50(1) 1.64(2) 9.12(2) 1.834
0.20656 3.45(1) 1.62(2) 1 1.823
0.20735 3.45(1) 1.60(2) 1.460 1.812
0.3000 1.56(1) 7.285 0.9636 1.019
0.5000 5.728 2.706 0.5583 0.4897
1.000 1.924 0.9056 0.2965 0.2196
1.200 1.542 0.7230 0.2583 0.1865
1.400 1.310 0.6102 0.2331 0.1652
1.600 1.164 0.5371 0.2152 0.1507
2.000 1.022 0.4566 0.1925 0.1329
2.200 1.008 0.4386 0.1853 0.1275
2.400 1.040 0.4351 0.1802 0.1235
2.600 1.151 0.4532 0.1764 0.1207
2.800 1.449 0.5227 0.1740 0.1189
3.000 2.713 0.8803 0.1726 0.1180
3.0461 3.783 1.211 0.1725 0.1179
3.0470 3.818 1 0.1725 0.1178
3.0477 3.841 1.22(1) 0.1725 0.1178
3.14 1.989(2) 1.405(2) 0.1724 0.1178
p 1 1 0.1724 0.1178

a Numbers in parentheses indicate the power of 10 by which the corresponding entry is to be multiplied.
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Wij ¼WðEi;vjÞ ¼
bM

Nc

XNc

n¼1

bnH½vðEi; bnÞ � vj�; bn ¼
bM

Nc
n� 1

2

� �
; ð42Þ
where vðEi; bnÞ is related to wðEi; bnÞ by Eq. (28). The values of wðEi; bnÞ were obtained from a quadratic polynomial interpo-
lation of the matrix wik calculated previously.

Now, using Eq. (36) the values rðEi;vjÞ are approximated by
rðEi;vjÞ ¼ �
1

sinvj

Wi1�Wi0
Dv if j ¼ 0;

Wijþ1�Wij�1
2Dv if 0 < j < Nv;

WiNv�WiNv�1

Dv if j ¼ Nv:

8>>><>>>: ð43Þ
The calculation of the DCS was carried out using the following parameters bM ¼ 20; Emin ¼ 10�3; Emax ¼ 103;Nb ¼ 105 and
Nc ¼ 108;Ne ¼ 4000;Nv ¼ 5000. In the most part of the variation interval of the deflection angle, the relative accuracy is
0.1% estimated by a comparison of results obtained for different values of the numerical scheme parameters. Near the sin-
gularities, i.e. when rðE;vÞ ! 1, the relative error is larger and reaches 2% in few points. However, such an inaccuracy
causes the relative uncertainty in the final numerical results on the transport coefficients within 10�4.

For four values of the energy, i.e. E ¼ 0:1, 1, 10 and 100, the DCS is plotted in Fig. 2. It can be seen that for the small energy
value ðE ¼ 0:1Þ the function rðE;vÞ is smooth. However, for the intermediate ðE ¼ 1Þ and large values (E ¼ 10 and 100) of the
energy, the DCS represents very narrow peaks tending to infinity. Such kind of the behaviour was indicated in the scattering
theory, see e.g. Ref. [33]. They are related to the fact that the derivatives @v=@b are zero in the corresponding points. It should
be noted that the curves are smooth on one side of the peaks, while they are broken on the other side. The numerical data of
the DCS are also reported in Table 3 where the peak positions and nearest points are included.

6. Transport coefficients

6.1. General remarks

When the DCS is known, the kernel (19) can be calculated and then the integro-differential Eq. (17) can be solved. To solve
such kind of kinetic equation, usually the discrete velocity method [2] is applied. First, a mesh in the velocity space is chosen
and the collision operator (23) is expressed by some quadrature formula. The left hand side of Eq. (17) is approximated by
some finite difference scheme. Then, using an iterative procedure the perturbation function hðr; cÞ is calculated in all points
of the physical space for all points of the velocity space. Once the perturbation function is known, any macroscopic quantity
can be calculated.

The optimum choice of the mesh in the velocity space is crucial for a successful solution of rarefied gas problems. The
mesh must be sufficiently dense to provide a good accuracy, but with a reasonable computational effort. In order to find
an optimum mesh and to estimate the computational effort needed to solve the kinetic equation, the transport coefficients,
viz. thermal conductivity and viscosity, are calculated in this section. This problem is zero-dimensional and does not require
any finite difference scheme. The transport coefficients calculated directly from the kinetic equation will be compared with
those obtained by the variational method in the frame of the Chapman–Enskog expansion.

6.2. Integral equation

According to Ref. [26–28] the heat conductivity j0 and viscosity l0 coefficients are calculated as
j0 ¼ kvm

d2

Z
/ðcÞAðcÞc2

x c2 � 5
2

� �
dc; ð44Þ

l0 ¼ mvm

d2

Z
/ðcÞBðcÞðcxcyÞ2 dc; ð45Þ
respectively. The functions AðcÞ and BðcÞ satisfy the corresponding integral equations
bL½AðcÞcx� þ cx c2 � 5
2

� �
¼ 0; ð46Þ

bL½BðcÞcxcy� þ 2cxcy ¼ 0: ð47Þ
In accordance with Eq. (21), the quantity cx is a collision invariant. As a consequence, the integral Eq. (46) does not determine
the function AðcÞ completely, but an additional constraint is necessary. Assuming that the gas must be at rest, such a con-
straint reads as
Z

/ðcÞAðcÞc2
x dc ¼ 0: ð48Þ
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Following Ref. [16] it is possible to simplify the numerical solution eliminating one variable in the velocity space. Let us
introduce the cylindrical coordinates
Table 4
Lennard

Gas

He
Ne
Ar
Kr
Xe
c ¼ ðcx; cy; czÞ ¼ ðcx; cr cos h; cr sin hÞ: ð49Þ
From Eq. (46) we conclude that the solution does not depend from the angle h, but it depends only on cx and cr . Then, the
integral Eq. (46) is reduced to
bL1½AðcÞcx� þ cx c2 � 5
2

� �
¼ 0; ð50Þ
where
bL1ðhÞ ¼
Z þ1

�1

Z þ1

0
/ðc�ÞK1ðcx; cr ; c�x; c

�
r Þ hðc�x; c�r Þ � hðcx; crÞ

 �

c�r dc�r dc�x; ð51Þ
which is obtained from Eq. (23) with W ¼ 1. Note, the function /ðcÞ does not depend from the angle h. The kernel K1 is given
by
K1ðcx; cr ; c�x; c
�
r Þ ¼ 2

Z p

0
Kðcx; cr; c�x; c

�
r ;bÞdb; b ¼ h� � h: ð52Þ
As was pointed out in Ref. [14], Eq. (47) can be written as
bL2½BðcÞcx� þ 2cxcr ¼ 0; ð53Þ
where the operator bL2 is obtained from Eq. (23) with W ¼ cy
bL2ðhÞ ¼
Z þ1

�1

Z þ1

0
/ðc�ÞK2ðcx; cr ; c�x; c

�
r Þ hðc�x; c�r Þ � hðcx; crÞ

 �

c�2r dc�r dc�x: ð54Þ
The kernel K2 reads
K2ðcx; cr ; c�x; c
�
r Þ ¼ 2

Z p

0
Kðcx; cr; c�x; c

�
r ;bÞ cos bdb; b ¼ h� h�: ð55Þ
Then, the calculation of the viscosity is reduced to the solution of Eq. (53).
It is convenient to present the numerical results in terms of the reduced transport coefficients defined as
j ¼ j0
d2

kvm
¼
Z

/ðcÞAðcÞc2
x c2 � 5

2

� �
dc; ð56Þ

l ¼ l0 d2

mvm
¼
Z

/ðcÞBðcÞðcxcyÞ2 dc: ð57Þ
6.3. Variational solution

In Refs. [26–28] a variational method to solve Eqs. (46) and (47) was applied. The trial functions were presented as series
of Sonine polynomials. Finally, the transport coefficients were expressed via the omega integrals (29), which depend on the
reduced temperature T� ¼ kT=�.

In the open literature, one can find diverse data, see e.g. Ref. [27], on the parameters � and d, which were extracted from
experimental data. Since our aim is the elaboration of numerical procedure to solve the kinetic equation, any data can be
used for our test. In this section, the numerical procedure will be applied to calculate the transport coefficients, that is
why the data extracted from the viscosity coefficient reported in Table I-A of Ref. [27] are used in the present work. The val-
ues of � and d corresponding to the noble gases used here are given in Table 4.

The omega integrals needed to calculate the transport coefficients were calculated on the basis of the numerical data on
the deflection angle vðE; bÞ presented in Section 4 assuming T ¼ 300 K and using the values of � from Table 4. Then, the
-Jones parameters for noble gases, Ref. [27].

�=k (K) d (nm)

10.22 0.2576
35.7 0.2789
124 0.3418
190 0.361
229 0.4055



Table 5
Reduced heat conductivity j obtained by the variational method and by the discrete velocity (DV) method.

Gas Variational method DV method

jð1Þ jð2Þ jð3Þ j

He 0.66499 0.67264 0.67320 0.6740
Ne 0.55388 0.55982 0.56018 0.5600
Ar 0.42335 0.42479 0.42479 0.4260
Kr 0.36321 0.36346 0.36349 0.3645
Xe 0.33476 0.33481 0.33485 0.3358

Table 6
Reduced viscosity l obtained by the variational method and by the discrete velocity (DV) method.

Gas Variational method DV method

lð1Þ lð2Þ lð3Þ l

He 0.17733 0.17866 0.17873 0.1787
Ne 0.14770 0.14873 0.14878 0.1480
Ar 0.11289 0.11314 0.11314 0.1130
Kr 0.096855 0.096899 0.096902 0.09680
Xe 0.089269 0.089278 0.089282 0.08919
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viscosity and heat conductivity were calculated using the analytical expressions (7.3-7) and (7.3-18) in Ref. [28], respec-
tively. These expressions represent 3rd order Chapman–Cowling approximation. The values of transport coefficients j
and l for the three approximations are given in Tables 5 and 6, respectively. It can be seen that the third approximation pro-
vides a good convergence. Below, these data will be used as benchmark values for the direct solution of the integral equa-
tions (50) and (53).

6.4. Numerical mesh in the velocity space

To apply the discrete velocity method to both (50) and (53) a mesh in the two dimensional velocity space, i.e. ðcx; crÞmust
be introduced. Several node distributions were tested and the following was chosen as the optimum one. The velocity com-
ponents were restricted by the intervals 0 6 jcxj 6 5 and 0 6 cr 6 5. The positive axis of cx is divided in non-regular subin-
tervals as
Dcxk ¼ 5
5k
Ncx

� �1:8

1� k� 1
k

� �1:8
" #

; 1 6 k 6
Ncx

5
; ð58Þ
while the variable cr is divided in regular subintervals
Dcr ¼
25
Ncr

; ð59Þ
where Ncx and Ncr are integer. In each subinterval, the nodes and weights of the Gauss–Legendre quadrature with five points
is used. Thus, each node cxk or crk has its own weight Wxk or Wrk, respectively. The negative points of the variable cx are dis-
tributed symmetrically with respect to the origin so as
cx;�k ¼ �cxk; Wx;�k ¼Wx;k; 1 6 k 6 Ncx: ð60Þ
6.5. Numerical scheme for the heat conductivity

Let us denote the unknown values of the function AðcÞcx in the mesh points as
Xkm ¼ AðckmÞcxk; ckm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

xk þ c2
rm

q
: ð61Þ
Then, the integral equation (50) is discretized as
X
i;j

LijkmðXij � XkmÞ þ Skm ¼ 0; ð62Þ
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where
Lijkm ¼ /ðcijÞK1ðcxk; crm; cxi; crjÞcrjWxiWrj; ð63Þ

Skm ¼ cxk c2
km �

5
2

� �
; ð64Þ

� Ncx 6 i; k 6 �1; 1 6 i; k 6 Ncx; ð65Þ
1 6 j; m 6 Ncr : ð66Þ
So, the integral equation (50) is reduced to the linear algebraic equation (62), which is solved by an iterative procedure. The
result of each iteration must be corrected using the condition (48). The correction of nth iteration is calculated as
DðnÞ ¼ 4p
X
k;m

/ðckmÞ~XkmcxkcrmWxkWrm; ð67Þ
which is subtracted from XðnÞkm. Finally, the iterative procedure takes the form
~XðnÞkm ¼ Xðn�1Þ
km þ 1

mkm

X
i;j

Lijkm Xðn�1Þ
ij � Xðn�1Þ

km

� �
þ Skm

" #
; ð68Þ

XðnÞkm ¼ ~XðnÞkm � DðnÞcxk
; ð69Þ
where
mkm ¼ mðckmÞ; ð70Þ
mðcÞ is given by Eq. (20). The reduced thermal conductivity coefficient jðnÞ is calculated at each iteration as
jðnÞ ¼ 2p
X
k;m

/ðckmÞXðnÞkm c2
km �

5
2

� �
cxkcrmWxkWrm: ð71Þ
The iteration is stopped when the relative difference of the heat conductivity in two successive iterations does not exceed the
value 10�8.

6.6. Numerical scheme for the viscosity

Let us denote the unknown values of the function BðcÞcx in the mesh points as
Xkm ¼ BðckmÞcxk: ð72Þ
Then, the integral equation (53) is discretized exactly as in the previous case, i.e. by Eq. (62), with the difference that
Lijkm ¼ /ðcijÞK2ðcxk; crm; cxi; crjÞc2
rjWxiWrj; ð73Þ

Skm ¼ 2cxkcrm: ð74Þ
Finally, the iterative procedure takes the form
XðnÞkm ¼ Xðn�1Þ
km þ 1

mkm

X
i;j

Lijkm Xðn�1Þ
ij � Xðn�1Þ

km

� �
þ Skm

" #
: ð75Þ
The reduce viscosity coefficient l is calculated in each iteration as
lðnÞ ¼ p
X
k;m

/ðckmÞXðnÞkmcxkc3
rmWxkWrm: ð76Þ
The iteration is stopped when the relative difference of the viscosity in two successive iterations does not exceed the value
10�8.

6.7. Results and discussion

First, the numerical calculations were carried out for the hard sphere molecules with the DCS given by Eq. (9). For this
potential the papers [6–9,18] reported the following values of the reduced transport coefficients
j ¼ 0:479305; l ¼ 0:126668 ð77Þ
obtained by different methods. In the present work, the numbers of nodes Ncx ¼ 40 and Ncr ¼ 40 were used to discretized the
component cx and cr , respectively. To calculate the integrals (52) and (55) the Simpson quadrature was used with 200 points.
As a results the values
j ¼ 0:47928; l ¼ 0:126668 ð78Þ
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were obtained, i.e. the relative difference of the heat conductivity from the previously obtained result does not exceed
5� 10�5, while the value of the viscosity is the same within the six digits.

The same mesh in the velocity space was applied to the calculation of the heat conductivity j and viscosity l using the
Lennard-Jones potential with the parameters given in Table 4 for all noble gases. The numerical results are given in Tables 5
and 6 for j and l, respectively. It can be seen that they are in a good agreement with those obtained by the variational meth-
od described in Refs. [26–28]. The maximum relative discrepancy does not exceed 5� 10�3.

It should be noted that the reduced transport coefficients j and l for the Lennard-Jones potential depend only on the
parameter �. The other parameter d is used only to related the reduced coefficients to the corresponding dimensional ones
by Eqs. (56) and (57). According to Table 4 the parameter �=k is quite different for different gas species and varies from
10.22 K to 229 K. However, the variation of the reduced coefficients j and l is not so significant. Their maximum values
are about double of their minimum ones.

7. Concluding remarks

The numerical scheme to solve the linearized Boltzmann equation for an arbitrary intermolecular potential was proposed.
As an example of its application, the thermal conductivity and viscosity coefficients were calculated. First, the scheme was
tested for the hard sphere model. A comparison with previously obtained numerical results showed that the relative numer-
ical error for the heat conductivity does not exceed 5� 10�5, while the viscosity was calculated with the accuracy of six dig-
its. Then, both thermal conductivity and viscosity were calculated for the nobles gases using the Lennard-Jones potential.
These are the first results based on the direct numerical solution of the linearized Boltzmann equation. They were compared
with those obtained by the variational method based on the approximation of the perturbation function by the Sonine poly-
nomials. The discrepancy between the present results and approximated ones does not exceed 5� 10�3.

The main computational effort to solve the Boltzmann equation for an arbitrary potential is concentrated in calculations
of the kernel, which depends on the mesh in the velocity space. Fortunately, the kernel does not depend on the mesh in the
physical space. Hence, once the kernel is calculated and stored it can be used to solve several problems of rarefied gas
dynamics with an additional effort, which is not significant.

In forthcoming papers, results for classical rarefied gas flows based on the kernel calculated in the present paper will be
reported.
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